If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x^2+2x-129=0
a = 40; b = 2; c = -129;
Δ = b2-4ac
Δ = 22-4·40·(-129)
Δ = 20644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20644}=\sqrt{4*5161}=\sqrt{4}*\sqrt{5161}=2\sqrt{5161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{5161}}{2*40}=\frac{-2-2\sqrt{5161}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{5161}}{2*40}=\frac{-2+2\sqrt{5161}}{80} $
| Y+2x=9-5 | | -c+1=0 | | x^2+10x^2=-49 | | 4x+3=18+2x= | | -40/4-2y=20 | | 5j2-2j=0 | | y=3y-y^2 | | x=(280x100)/40 | | 3/n=9/12 | | h-4/6=6/2*6 | | 5x=30-30 | | 3/n=3/12 | | x²+12x-64=0 | | 16+2x+4=x+9 | | 9+6t-t^2=t | | 20-4y=-16 | | 8x-34+12-2x=14-10x+8+12x | | 9+6t-t^2=0 | | 15+5y=15 | | x/2=(x+1)/3 | | d+0.02=510 | | 20x+(30(x-8))=250 | | X²-12x-3456=0 | | 5(3x+4)-8(6x-7)=9x | | 470x=500*(470+x) | | x-1,06x=500 | | 4(x-3)-x+2x=5(3x-7)-9x | | 5(0)+4y-20=0 | | 10=h÷44 | | X*101+8x=43 | | 2n-4X2-3X5n-4=1250 | | 9-5÷(8-3)x2+6= |